設函數fn(x)=xn+bx-1(n∈N*,b∈R).
(1)當n=2時,對?x1、x2∈[0,1],都有|f2(x1)-f2(x2)|max=4,求b的值;
(2)當n≥2且b=1時,證明:fn(x)在區(qū)間(12,1)內存在唯一零點xn,判斷并證明數列x2,x3,…,xn,…的單調性.
(
1
2
,
1
)
【考點】利用導數研究函數的單調性.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:7難度:0.4
相似題
-
1.已知函數f(x)=x3-2kx2+x-3在R上不單調,則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:227難度:0.8 -
2.在R上可導的函數f(x)的圖象如圖示,f′(x)為函數f(x)的導數,則關于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:263難度:0.9 -
3.已知函數f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數f(x)在(0,+∞)上單調遞增,求實數a的取值范圍;
(Ⅱ)若函數f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:139引用:2難度:0.2