已知f(x)=xlnx,g(x)=x2+e22x(x>0),f(x1)=f(x2)=g(x3)=g(x4)=m(m>e),1<x1<x2,0<x3<x4.
(1)求f(x)的單調(diào)區(qū)間;
(2)若G(x)=1f(x)+1x+a(x-1)在區(qū)間(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)求證:x2+x3>x1+x4.
f
(
x
)
=
x
lnx
g
(
x
)
=
x
2
+
e
2
2
x
(
x
>
0
)
G
(
x
)
=
1
f
(
x
)
+
1
x
+
a
(
x
-
1
)
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:177引用:1難度:0.3
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2
相關(guān)試卷