已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的右焦點(diǎn)為F,關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)A、B分別在雙曲線的左、右兩支上,AF?FB=0,3BF=FC且點(diǎn)C在雙曲線上,則雙曲線的離心率為( ?。?/h1>
C
:
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
AF
?
FB
=
0
3
BF
=
FC
【考點(diǎn)】求雙曲線的離心率.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/30 8:30:1組卷:1075引用:15難度:0.5
相似題
-
1.已知F1、F2為雙曲線C1:
=1(a>0,b>0)的焦點(diǎn),P為x2+y2=c2與雙曲線C1的交點(diǎn),且有tan∠PF1F2=x2a2-y2b2,則該雙曲線的離心率為( ?。?/h2>13發(fā)布:2024/12/19 0:0:2組卷:70引用:4難度:0.6 -
2.設(shè)a>1,則雙曲線
的離心率e的取值范圍是( ?。?/h2>x2a2-y2(a+1)2=1發(fā)布:2024/12/29 0:0:2組卷:796引用:17難度:0.7 -
3.已知雙曲線
=1(a>0,b>0)的一條漸近線的方程是y=x2a2-y2b2x,則該雙曲線的離心率為( ?。?/h2>32發(fā)布:2025/1/5 18:30:5組卷:227引用:3難度:0.7