設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1”.
(Ⅰ)判斷函數(shù)f(x)=x2+sinx4是否是集合M中的元素,并說明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]?D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個(gè)實(shí)數(shù)根;
(Ⅲ)設(shè)x1是方程f(x)-x=0的實(shí)數(shù)根,求證:對(duì)于f(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),|f(x3)-f(x2)|<2.
f
(
x
)
=
x
2
+
sinx
4
【考點(diǎn)】不等式的證明.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/11 9:0:1組卷:520引用:10難度:0.5
相似題
-
1.已知關(guān)于x的不等式|x+1|-|x-2|≥|t-1|+t有解.
(1)求實(shí)數(shù)t的取值范圍;
(2)若a,b,c均為正數(shù),m為t的最大值,且2a+b+c=m.求證:.a2+b2+c2≥23發(fā)布:2024/12/29 8:0:12組卷:65引用:9難度:0.5 -
2.已知函數(shù)f(x)滿足2axf(x)=2f(x)-1,f(1)=1,設(shè)無窮數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若a1=3,從第幾項(xiàng)起,數(shù)列{an}中的項(xiàng)滿足an<an+1;
(3)若1+<a1<1m(m為常數(shù)且m∈N,m≠1),求最小自然數(shù)N,使得當(dāng)n≥N時(shí),總有0<an<1成立.mm-1發(fā)布:2025/1/14 8:0:1組卷:62引用:2難度:0.5 -
3.我們知道,
,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立.即a,b的算術(shù)平均數(shù)的平方不大于a,b平方的算術(shù)平均數(shù).此結(jié)論可以推廣到三元,即(a+b2)2≤a2+b22,當(dāng)且僅當(dāng)a=b=c時(shí)等號(hào)成立.(a+b+c3)2≤a2+b2+c23
(1)證明:,當(dāng)且僅當(dāng)a=b=c時(shí)等號(hào)成立.(a+b+c3)2≤a2+b2+c23
(2)已知x>0,y>0,z>0,若不等式恒成立,利用(1)中的不等式,求實(shí)數(shù)t的最小值.x+y+z≤tx+y+z發(fā)布:2024/10/12 1:0:1組卷:15引用:2難度:0.4