完全平方公式(a±b)2=a2±2ab+b2進(jìn)行適當(dāng)?shù)淖冃魏?,可以解決很多的數(shù)學(xué)問題.
如:若x滿足(9-x)(x-4)=4,求(9-x)2+(x-4)2的值.
解題思路:由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab,
可設(shè)9-x=a,x-4=b,則(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,
∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17;
(1)請(qǐng)仿照上面的方法求解下面問題:
①若x滿足(6-x)(x-2)=2,求(6-x)2+(x-2)2的值;
②若x滿足(6+x)(2+x)=5,求(6+x)2+(2+x)2的值;
(2)應(yīng)用上面的解題思路解決問題:如圖,點(diǎn)C是線段AB上的一點(diǎn),以AC,BC為邊向兩邊作正方形,設(shè)AB=8,兩正方形的面積和S1+S2=34,求圖中陰影部分的面積.
【考點(diǎn)】完全平方公式的幾何背景;多項(xiàng)式乘多項(xiàng)式.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:285引用:2難度:0.5
相似題
-
1.學(xué)習(xí)整式乘法時(shí),老師拿出三種型號(hào)卡片,如圖1.
(1)利用多項(xiàng)式與多項(xiàng)式相乘的法則,計(jì)算:(a+2b)(a+b)=;
(2)選取1張A型卡片,4張C型卡片,則應(yīng)取 張B型卡片才能用它們拼成一個(gè)新的正方形,此新的正方形的邊長是 (用含a,b的代數(shù)式表示);
(3)選取4張C型卡片在紙上按圖2的方式拼圖,并剪出中間正方形作為第四種D型卡片,由此可檢驗(yàn)的等量關(guān)系為 ;
(4)選取1張D型卡片,3張C型卡片按圖3的方式不重復(fù)的疊放長方形MNPQ框架內(nèi),已知NP的長度固定不變,MN的長度可以變化,且MN≠0.圖中兩陰影部分(長方形)的面積分別表示為S1,S2,若S1-S2=3b2,則a與b有什么關(guān)系?請(qǐng)說明理由.發(fā)布:2024/12/23 18:0:1組卷:3131引用:5難度:0.1 -
2.如圖所示的是正方形的房屋結(jié)構(gòu)平面圖,其中主臥與客臥都是正方形,其面積之和比其余面積(陰影部分)多6.25m2,則主臥與客臥的周長差是( ?。?/h2>
發(fā)布:2025/1/1 6:30:3組卷:197引用:3難度:0.6 -
3.如圖,兩個(gè)正方形邊長分別為a,b,如果a+b=10,ab=18,則陰影部分的面積為.
發(fā)布:2024/12/23 18:0:1組卷:1966引用:6難度:0.5