設數(shù)列A:a1,a2,…,an(n≥2).如果ai∈{1,2,…,n}(i=1,2,…,n),且當i≠j時,ai≠aj(1≤i,j≤n),則稱數(shù)列A具有性質P.對于具有性質P的數(shù)列A,定義數(shù)列T(A):t1,t2,…,tn-1,其中tk=1,ak<ak+1, 0,ak>ak+1
(k=1,2,…,n-1).
(Ⅰ)對T(A):0,1,1,寫出所有具有性質P的數(shù)列A;
(Ⅱ)對數(shù)列E:e1,e2,…,en-1(n≥2),其中ei∈{0,1}(i=1,2,…,n-1),證明:存在具有性質P的數(shù)列A,使得T(A)與E為同一個數(shù)列;
(Ⅲ)對具有性質P的數(shù)列A,若|a1-an|=1(n≥5)且數(shù)列T(A)滿足ti=0,i為奇數(shù), 1,i為偶數(shù)
(i=1,2,?,n-1),證明:這樣的數(shù)列A有偶數(shù)個.
1 , a k < a k + 1 , |
0 , a k > a k + 1 |
(
k
=
1
,
2
,…,
n
-
1
0 , i 為奇數(shù) , |
1 , i 為偶數(shù) |
【考點】數(shù)列的應用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:273引用:5難度:0.4
相似題
-
1.在當前市場經濟條件下,私營個體商店中的商品,所標價格a與其實際價值之間,存在著相當大的差距.對顧客而言,總是希望通過“討價還價”來減少商品所標價格a與其實際價值的差距.設顧客第n次的還價為bn,商家第n次的討價為cn.有一種“對半討價還價”法如下:顧客第一次的還價為標價a的一半,即第一次還價
,商家第一次的討價為b1與標價a的平均值,即b1=a2;…;顧客第n次的還價為上一次商家的討價cn-1與顧客的還價bn-1的平均值,即c1=a+b12,商家第n次的討價為上一次商家的討價cn-1與顧客這一次的還價bn的平均值,即bn=cn-1+bn-12.現(xiàn)有一件衣服標價1200元,若經過n次的“對半討價還價”,bn與cn相差不到1元,則n最小值為( ?。?/h2>cn=cn-1+bn2發(fā)布:2024/12/13 17:0:2組卷:173引用:7難度:0.5 -
2.已知{an},{bn}為兩非零有理數(shù)列(即對任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無理數(shù)列(即對任意的i∈N*,di為無理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對任意的n∈N*恒成立,試求{dn}的通項公式.
(2)若{dn3}為有理數(shù)列,試證明:對任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要條件為.an=11+dn6bn=dn31+dn6
(3)已知sin2θ=(0<θ<2425),dn=π2,試計算bn.3tan(n?π2+(-1)nθ)發(fā)布:2024/12/22 8:0:1組卷:189引用:3難度:0.1 -
3.2023年是我國規(guī)劃的收官之年,2022年11月23日全國22個省份的832個國家級貧困縣全部脫貧摘帽.利用電商平臺,開啟數(shù)字化科技優(yōu)勢,帶動消費扶貧起到了重要作用.阿里研究院數(shù)據顯示,2013年全國淘寶村僅為20個,通過各地政府精準扶貧,與電商平臺不斷合作創(chuàng)新,2014年、2015年、2016年全國淘寶村分別為212個、779個、1311個,從2017年起比上一年約增加1000個淘寶村,請你估計收官之年全國淘寶村的數(shù)量可能為( ?。?/h2>
發(fā)布:2024/12/18 13:30:2組卷:89引用:1難度:0.9
把好題分享給你的好友吧~~