已知函數(shù)f(x)=ln(x+1),g(x)=x2+bx+1(b為常數(shù)),h(x)=f(x)-g(x).
(1)若存在過原點的直線與函數(shù)f(x)、g(x)的圖象相切,求實數(shù)b的值;
(2)當b=-2時,?x1、x2∈[0,1]使得h(x1)-h(x2)≥M成立,求M的最大值;
(3)若函數(shù)h(x)的圖象與x軸有兩個不同的交點A(x1,0)、B(x2,0),且0<x1<x2,求證:h′(x1+x22)<0.
x
1
+
x
2
2
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:272引用:4難度:0.1