試卷征集
加入會員
操作視頻

菁優(yōu)網如圖,四個全等的直角三角形圍成一個大正方形ABCD,中間陰影部分是一個小正方形EFGH,這樣就組成一個“趙爽弦圖”.若AB=10,AE=8,則正方形EFGH的面積為( ?。?/h1>

【考點】勾股定理的證明
【答案】A
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/25 8:0:9組卷:2390引用:11難度:0.8
相似題
  • 菁優(yōu)網1.如圖所示的“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲.該圖由四個全等的直角三角形和一個小正方形拼成一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b.若ab=10,大正方形面積為25,則小正方形邊長為( ?。?/h2>

    發(fā)布:2024/11/1 11:30:2組卷:1201引用:7難度:0.5
  • 2.請閱讀下面文字并完成相關任務.
    勾股定理,是幾何學中一顆光彩奪目的明珠,被稱為“幾何學的基石”.在我國最早對勾股定理進行證明的是三國時期吳國的數(shù)學家趙爽.
    (1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,用它可以驗證勾股定理,思路是:大正方形的面積有兩種求法,一種是等于c2,另一種是等于四個直角三角形與一個小正方形的面積之和,即
    1
    2
    ab
    ×
    4
    +
    b
    -
    a
    2
    ,從而得到等式c2=
    1
    2
    ab
    ×
    4
    +
    b
    -
    a
    2
    ,化簡便得結論a2+b2=c2.這里用兩種求法來表示同一個量從而得到等式或方程的方法,我們稱之為“雙求法”.現(xiàn)在,請你用“雙求法”解決下面問題:
    如圖2,在△ABC中,AD是BC邊上的高,AB=4,AC=5,BC=6,設BD=x,求x的值.
    菁優(yōu)網?
    (2)2002年在北京召開的國際數(shù)學家大會會標和2021年在上海召開的國際數(shù)學教育大會會標,都包含了趙爽的弦圖.如圖3,如果大正方形的面積為18,直角三角形中較短直角邊長為a,較長直角邊長為b,且a2+b2=ab+10,那么小正方形的面積為

    (3)勾股定理本身及其驗證和應用過程都體現(xiàn)了一種重要的數(shù)學思想是

    A.函數(shù)思想
    B.整體思想
    C.分類討論思想
    D.數(shù)形結合思想

    發(fā)布:2024/10/19 8:0:2組卷:202引用:1難度:0.5
  • 3.勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小明以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖①或圖②擺放時,都可以用“面積法”來證明,下面是小明利用圖①證明勾股定理的過程:將兩個全等的直角三角形按圖①所示擺放,其中∠DAB=90°,求證:a2+b2=c2
    菁優(yōu)網
    證明:連接DB,過點D作BC邊上的高DF,則DF=EC=b-a,FC=DE=b,
    ∵S四邊形ADCB=S△ACD+S△ABC=
    1
    2
    b2+
    1
    2
    ab,
    S四邊形ADCB=S△ADB+S△DCB=
    1
    2
    c2+
    1
    2
    a(b-a)
    1
    2
    b2+
    1
    2
    ab=
    1
    2
    c2+
    1
    2
    a(b-a)
    ∴a2+b2=c2
    請參照上述證法,利用圖②完成下面的證明:
    將兩個全等的直角三角形按圖②所示擺放,其中∠DAB=90°.求證:a2+b2=c2

    發(fā)布:2024/10/20 7:0:2組卷:194引用:1難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據(jù),本網將在三個工作日內改正