已知函數(shù)F(x)=ex-ax22+ax(a∈R),F(x)的導(dǎo)函數(shù)為F′(x).
(Ⅰ)記f(x)=F′(x),討論函數(shù)y=f(x)的單調(diào)性;
(Ⅱ)若函數(shù)y=F(x)有兩個極值點x1,x2(x1<x2).
(ⅰ)求證:lna-2<x2-x1<2lna-1-aa-e;
(ⅱ)若3x1-x2≤2,求a的取值范圍.
F
(
x
)
=
e
x
-
a
x
2
2
+
ax
(
a
∈
R
)
,
F
(
x
)
lna
-
2
<
x
2
-
x
1
<
2
lna
-
1
-
a
a
-
e
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:133引用:3難度:0.2
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( )
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2