試卷征集
加入會員
操作視頻

【問題提出】如圖1,AB為⊙O的一條弦,點C在弦AB所對的優(yōu)弧上運(yùn)動時,根據(jù)圓周角性質(zhì),我們知道∠ACB的度數(shù)不變.愛動腦筋的小芳猜想,如果平面內(nèi)線段AB的長度已知,∠ACB的大小確定,那么點C是不是在某個確定的圓上運(yùn)動呢?
【問題探究】為了解決這個問題,小芳先從一個特殊的例子開始研究.如圖2,若AB=4,線段AB上方一點C滿足∠ACB=45°,為了畫出點C所在的圓,小芳以AB為底邊構(gòu)造了一個Rt△AOB,再以點O為圓心,OA為半徑畫圓,則點C在⊙O上.后來小芳通過逆向思維及合情推理,得出一個一般性的結(jié)論.即:若線段AB的長度已知,∠ACB的大小確定,則點C一定在某一個確定的圓上,即定弦定角必定圓,我們把這樣的幾何模型稱之為“定弦定角”模型.
【模型應(yīng)用】(1)若
AB
=
6
3
,平面內(nèi)一點C滿足∠ACB=60°,若點C所在圓的圓心為O,則∠AOB=
120°
120°
,半徑OA的長為
6
6
;
(2)如圖3,已知正方形ABCD以AB為腰向正方形內(nèi)部作等腰△ABE,其中AB=AE,過點E作EF⊥AB于點F,若點P是△AEF的內(nèi)心.
①求∠BPA的度數(shù);
②連接CP,若正方形ABCD的邊長為6,求CP的最小值.
菁優(yōu)網(wǎng)

【考點】圓的綜合題
【答案】120°;6
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:587引用:5難度:0.4
相似題
  • 菁優(yōu)網(wǎng)1.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
    (1)求證:EF是⊙O的切線;
    (2)求證:AC2=AD?AB;
    (3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.

    發(fā)布:2024/12/23 9:0:2組卷:1798引用:34難度:0.7
  • 菁優(yōu)網(wǎng)2.如圖,矩形ABCD中,AB=13,AD=6.點E是CD上的動點,以AE為直徑的⊙O與AB交于點F,過點F作FG⊥BE于點G.
    (1)當(dāng)E是CD的中點時:tan∠EAB的值為
    ;
    (2)在(1)的條件下,證明:FG是⊙O的切線;
    (3)試探究:BE能否與⊙O相切?若能,求出此時BE的長;若不能,請說明理由.

    發(fā)布:2024/12/23 12:0:2組卷:639引用:5難度:0.4
  • 3.在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點,點P到⊙O的距離SP的定義如下:若點P與圓心O重合,則SP為⊙O的半徑長;若點P與圓心O不重合,作射線OP交⊙O于點A,則SP為線段AP的長度.
    圖1為點P在⊙O外的情形示意圖.
    菁優(yōu)網(wǎng)
    (1)若點B(1,0),C(1,1),
    D
    0
    ,
    1
    3
    ,則SB=
     
    ;SC=
     
    ;SD=
     
    ;
    (2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;
    (3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在⊙O內(nèi)且ST≥SR,直接寫出滿足條件的線段PQ長度的最大值.

    發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正