已知a>0且a≠1,函數(shù)f(x)=4x,x≥0 2a-x,x<0
滿足f(1-a)=f(a-1),設(shè)h(x)=ax.
(1)求函數(shù)y=h(2x)-h(x)+1在區(qū)間[-2,2]上的值域;
(2)若函數(shù)y=|h(x)+m|和y=|h(-x)+m|在區(qū)間[1,2023]上的單調(diào)性相同,求實數(shù)m的取值范圍.
f
(
x
)
=
4 x , x ≥ 0 |
2 a - x , x < 0 |
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/20 3:0:1組卷:201引用:5難度:0.6
相似題
-
1.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
稱為狄利克雷函數(shù),關(guān)于函數(shù)f(x)有以下四個命題:1,x∈Q0,x∈?RQ
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的序號為.(寫出所有正確命題的序號)發(fā)布:2024/12/22 8:0:1組卷:22引用:2難度:0.5 -
2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=e-x(x-1).則下列結(jié)論正確的是( ?。?/h2>
發(fā)布:2024/12/20 4:30:1組卷:295引用:9難度:0.5 -
3.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個數(shù)是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:58引用:4難度:0.7
把好題分享給你的好友吧~~