對于平面直角坐標(biāo)系xOy中第一象限內(nèi)的點(diǎn)P(x,y)和圖形W,給出如下定義:
過點(diǎn)P作x軸和y軸的垂線,垂足分別為M,N,若圖形W中的任意一點(diǎn)Q(a,b)滿足a≤x且b≤y,則稱四邊形PMON是圖形W的一個覆蓋,點(diǎn)P為這個覆蓋的一個特征點(diǎn).例:已知A(1,2),B(3,1),則點(diǎn)P(5,4)為線段AB的一個覆蓋的特征點(diǎn).
(1)已知點(diǎn)C(2,3),
①在P1(1,3),P2(3,3),P3(4,4)中,是△ABC的覆蓋特征點(diǎn)的為P2,P3P2,P3;
②若在一次函數(shù)y=mx+5(m≠0)的圖象上存在△ABC的覆蓋的特征點(diǎn),求m的取值范圍.
(2)以點(diǎn)D(2,4)為圓心,半徑為1作圓,在拋物線y=ax2-5ax+4(a≠0)上存在⊙D的覆蓋的特征點(diǎn),直接寫出a的取值范圍a>0或a≤-16a>0或a≤-16.
a
≤
-
1
6
a
≤
-
1
6
【考點(diǎn)】二次函數(shù)綜合題.
【答案】P2,P3;a>0或
a
≤
-
1
6
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/20 14:0:8組卷:782引用:10難度:0.1
相似題
-
1.如圖,二次函數(shù)y=-x2+bx+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.已知B(3,0),C(0,4),連接BC.
(1)b=,c=;
(2)點(diǎn)M為直線BC上方拋物線上一動點(diǎn),當(dāng)△MBC面積最大時,求點(diǎn)M的坐標(biāo);
(3)①點(diǎn)P在拋物線上,若△PAC是以AC為直角邊的直角三角形,求點(diǎn)P的橫坐標(biāo);
②在拋物線上是否存在一點(diǎn)Q,連接AC,使∠QBA=2∠ACO,若存在,直接寫出點(diǎn)Q的橫坐標(biāo);若不存在,請說明理由.發(fā)布:2024/12/23 11:0:1組卷:602引用:2難度:0.2 -
2.拋物線y=ax2+bx+3經(jīng)過點(diǎn)A、B、C,已知A(-1,0),B(3,0).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時,求點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的條件下,延長DP交x軸于點(diǎn)F,M(m,0)是x軸上一動點(diǎn),N是線段DF上一點(diǎn),當(dāng)△BDC的面積最大時,若∠MNC=90°,請直接寫出實(shí)數(shù)m的取值范圍.發(fā)布:2024/12/23 8:0:23組卷:731引用:4難度:0.5 -
3.已知,如圖1,過點(diǎn)E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點(diǎn)A、B的橫坐標(biāo)分別為-1和4,直線AB交y軸于點(diǎn)F,過點(diǎn)A、B分別作直線l的垂線,垂足分別為點(diǎn)C、D,連接CF、DF.14
(1)求點(diǎn)A、B、F的坐標(biāo);
(2)求證:CF⊥DF;
(3)點(diǎn)P是拋物線y=x2對稱軸右側(cè)圖象上的一動點(diǎn),過點(diǎn)P作PQ⊥PO交x軸于點(diǎn)Q,是否存在點(diǎn)P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1
把好題分享給你的好友吧~~