已知函數f(x)=x2+ax-lnx,a∈R.
(Ⅰ)當a=1時,求f(x)的單調區(qū)間;
(Ⅱ)當函數f(x)在[1,2]上是減函數,求實數a的取值范圍;
(Ⅲ)令g(x)=f(x)-x2,是否存在實數a,當x∈(0,e](e是自然對數的底數時,函數g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
【考點】利用導數研究函數的最值;利用導數研究函數的單調性.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/13 9:0:1組卷:121引用:4難度:0.1
相似題
-
1.函數f(x)是定義在(0,+∞)上的可導函數,其導函數為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實數a的取值范圍是( )ax?f(ax)lnx≥f(lnx)?lnxax發(fā)布:2024/12/20 7:0:1組卷:222難度:0.6 -
2.已知函數
,當x∈(0,+∞)時,f(x)≥0恒成立,則實數a的取值范圍是( ?。?/h2>f(x)=e2x-2lnx+ax+1x2發(fā)布:2024/12/20 10:0:1組卷:66引用:2難度:0.5 -
3.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( )2aex0發(fā)布:2024/12/20 6:0:1組卷:261引用:9難度:0.4
把好題分享給你的好友吧~~