試卷征集
加入會員
操作視頻

古希臘數(shù)學家阿波羅尼奧斯的著作《圓錐曲線論》中給出圓的另一種定義:平面內(nèi),到兩個定點距離之比值為常數(shù)λ(λ>0,λ≠1)的點的軌跡是圓,我們稱之為阿波羅尼奧斯圓.已知點P到A(-2,0)的距離是點P到B(1,0)的距離的2倍.
(1)求點P的軌跡方程;
(2)若點P與點Q關于點B對稱,點C(5,8),求|QB|2+|QC|2的最大值;
(3)若過B的直線與第二問中Q的軌跡交于E,F(xiàn)兩點,試問在x軸上是否存在點M(m,0),使
ME
?
MF
恒為定值?若存在,求出點M的坐標和定值;若不存在,請說明理由.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/3 1:0:1組卷:42引用:3難度:0.5
相似題
  • 1.已知雙曲線
    x
    2
    12
    -
    y
    2
    4
    =
    1
    的右焦點為F,若過點F的直線與雙曲線的右支有且只有一個交點,則此直線的斜率的取值范圍是

    發(fā)布:2024/11/2 3:0:1組卷:345引用:12難度:0.5
  • 2.已知圓E:(x+1)2+y2=8,F(xiàn)(1,0)為圓E內(nèi)一個定點,P是圓E上任意一點,線段FP的垂直平分線l交EP于點Q,當點P在圓E上運動時.
    (1)求點Q的軌跡C的方程;
    (2)已知圓O:
    x
    2
    +
    y
    2
    =
    2
    3
    在C的內(nèi)部,A,B是C上不同的兩點,且直線AB與圓O相切.求證:以AB為直徑的圓過定點.

    發(fā)布:2024/10/24 13:0:4組卷:96引用:4難度:0.5
  • 3.已知動點P到兩定點
    A
    -
    2
    2
    ,
    0
    ,
    B
    2
    2
    0
    的距離和為6,記動點P的軌跡為曲線.
    (1)求曲線C的方程;
    (2)直線l:x-my-1=0與曲線C交于M,N兩點,在x軸是否存在點T(若記直線MT、NT的斜率分別為kMT,kNT)使得kMT?kNT為定值,若存在,請求出點T坐標;若不存在,請說明理由.

    發(fā)布:2024/10/25 2:0:2組卷:83引用:4難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正