設(shè)多面體ABCDEF,已知AB∥CD∥EF,平面ABCD⊥平面ADF,△ADF是以AD為斜邊的等腰直角三角形,若∠ADC=120°,AD=2,AB=2,CD=4,EF=3,G為BC的中點.
(1)求證:EG∥平面ADF;
(2)求直線DE與平面ABCD所成角的余弦值.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:41引用:3難度:0.1
相似題
-
1.如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.
(1)證明:O1A∥平面B1OC;
(2)證明:平面A1ACC1⊥平面B1BCC1;
(3)設(shè)AB=AA1=2,在圓柱OO1內(nèi)隨機選取一點,記該點取自于三棱柱ABC-A1B1C1內(nèi)的概率為P,當(dāng)點C在圓周上運動時,求P的最大值.發(fā)布:2025/1/20 8:0:1組卷:24引用:1難度:0.3 -
2.如圖,AB是圓O的直徑,點C是弧AB的中點,D、E、F分別是VB,VC,AC的中點,VA⊥平面ABC.
(Ⅰ)求證:DE∥平面VOF;
(Ⅱ)求證:DE⊥平面VAC.發(fā)布:2025/1/20 8:0:1組卷:26引用:1難度:0.5 -
3.如圖,AB是圓O的直徑,C是圓O上的點.P是圓所在的面外一點.設(shè)Q為PA的中點,G為AOC的重心.求證:QG∥平面PBC.
發(fā)布:2025/1/20 8:0:1組卷:74引用:0難度:0.7