試卷征集
加入會(huì)員
操作視頻

在平面直角坐標(biāo)系xOy中,已知橢圓
E
x
2
4
+
y
2
3
=
1
的左、右焦點(diǎn)分別為F1、F2,點(diǎn)A在橢圓E上且在第一象限內(nèi),AF2⊥F1F2,直線AF1與橢圓E相交于另一點(diǎn)B.
(1)求△AF1F2的周長;
(2)在x軸上任取一點(diǎn)P,直線AP與直線x=4相交于點(diǎn)Q,求
OP
?
QP
的最小值;
(3)設(shè)點(diǎn)M在橢圓E上,記△OAB與△MAB的面積分別為S1、S2,若S2=3S1,求點(diǎn)M的坐標(biāo).

【考點(diǎn)】橢圓與平面向量
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/23 12:26:7組卷:121引用:3難度:0.5
相似題
  • 1.橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1的直線l交橢圓C于A,B兩點(diǎn),若|F1F2|=|AF2|,
    A
    F
    1
    =2
    F
    1
    B
    ,則橢圓C的離心率為(  )

    發(fā)布:2024/12/6 18:30:2組卷:753引用:6難度:0.6
  • 2.在直角坐標(biāo)系xOy中,已知橢圓
    C
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的右焦點(diǎn)為F(1,0),過點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),|AB|的最小值為
    2

    (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
    (Ⅱ)若與A,B不共線的點(diǎn)P滿足
    OP
    =
    λ
    OA
    +
    2
    -
    λ
    OB
    ,求△PAB面積的取值范圍.

    發(fā)布:2024/12/29 13:30:1組卷:105引用:3難度:0.4
  • 3.已知橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,經(jīng)過F1的直線交橢圓于A,B,△ABF2的內(nèi)切圓的圓心為I,若3
    IB
    +4
    IA
    +5
    I
    F
    2
    =
    0
    ,則該橢圓的離心率是(  )

    發(fā)布:2024/11/28 2:30:1組卷:1184引用:12難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正