已知函數(shù)f(x)是定義在[-2,2]上的奇函數(shù),當(dāng)x∈[-2,0)時,f(x)=tx-12x3(t為常數(shù)).
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[2,6]時,求f(x)在[-2,0]上的最小值,及取得最小值時的x,并猜想f(x)在[0,2]上的單調(diào)遞增區(qū)間(不必證明);
(3)當(dāng)t≥9時,證明:函數(shù)y=f(x)的圖象上至少有一個點落在直線y=14上.
f
(
x
)
=
tx
-
1
2
x
3
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:98引用:2難度:0.1
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數(shù)k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2A.( ,+∞)12eB.( ,12e)2e2C.( ,12e]2e2D.( ,1]2e2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1 -
3.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5