如圖1,在平面直角坐標系中,拋物線y=ax2+c與x軸正半軸交于點F(4,0)、與y軸正半軸交于點E(0,4),邊長為4的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合;
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點P且同時與邊CD交于點Q.設(shè)點A的坐標為(m,n)
①當PO=PF時,分別求出點P和點Q的坐標及PF所在直線l的函數(shù)解析式;
②當n=2時,若P為AB邊中點,請求出m的值;
(3)若點B在第(2)①中的PF所在直線l上運動,且正方形ABCD與拋物線有兩個交點,請直接寫出m的取值范圍.
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:459引用:3難度:0.5
相似題
-
1.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3618引用:36難度:0.4 -
2.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應(yīng)點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5A. 25<a<1320B. 25<a<1120C. 1120<a<35D. 35<a<1320發(fā)布:2024/12/26 1:30:3組卷:2655引用:7難度:0.7 -
3.已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.14
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側(cè)圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1
把好題分享給你的好友吧~~