已知數(shù)列{an}的前n項(xiàng)和為Sn,其中an=Snn(2n-1)且a1=13.
(1)求a2,a3;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.
a
n
=
S
n
n
(
2
n
-
1
)
a
1
=
1
3
【考點(diǎn)】數(shù)學(xué)歸納法;數(shù)列遞推式.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:302引用:9難度:0.3
相似題
-
1.用數(shù)學(xué)歸納法證明
+1n+1+…+1n+2≥13n,從n=k到n=k+1,不等式左邊需添加的項(xiàng)是( )56發(fā)布:2024/12/17 12:30:2組卷:393引用:10難度:0.9 -
2.用數(shù)學(xué)歸納法證明
時(shí),在證明n=1等式成立時(shí),此時(shí)等式的左邊是( ?。?/h2>1+a+a2+…+a2(n+1)=1-a2n+31-a(a≠1,n∈N*)發(fā)布:2024/12/29 9:0:1組卷:291引用:3難度:0.8 -
3.已知n為正整數(shù),請(qǐng)用數(shù)學(xué)歸納法證明:1+
+12+……+131n.<2n發(fā)布:2024/10/27 17:0:2組卷:424引用:1難度:0.7