已知雙曲線C的中心為坐標(biāo)原點,一條漸近線方程為y=2x,點P(22,-2)在C上,則C的方程為( ?。?/h1>
y
=
2
x
P
(
2
2
,-
2
)
x 2 2 - y 2 4 = 1 | x 2 7 - y 2 14 = 1 | x 2 4 - y 2 2 = 1 | y 2 14 - x 2 7 = 1 |
【考點】雙曲線的幾何特征.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:135引用:3難度:0.8
相似題
-
1.雙曲線
的焦點到漸近線的距離為( ?。?/h2>x25-y2=1A.1 B.2 C. 5D. 25發(fā)布:2024/12/20 12:0:3組卷:63引用:1難度:0.7 -
2.過雙曲線
的左頂點,且與直線2x-y+1=0平行的直線方程為 .x24-y23=1發(fā)布:2024/12/20 0:0:1組卷:49引用:5難度:0.7 -
3.雙曲線
的右焦點恰是拋物線y2=2px(p>0)的焦點F,雙曲線與拋物線在第一象限交于點A(2,m),若|AF|=5,則雙曲線的方程為( )x2a2-y2b2=1(a>0,b>0)A. x26-y23=1B. x28-y2=1C. x23-y26=1D. x2-y28=1發(fā)布:2024/12/20 20:30:1組卷:228引用:3難度:0.6
把好題分享給你的好友吧~~