已知函數(shù)y=logax過定點(m,n),函數(shù)f(x)=xx2+m+n的定義域為[-1,1].
(Ⅰ)求定點(m,n)并證明函數(shù)f(x)的奇偶性;
(Ⅱ)判斷并證明函數(shù)f(x)在[-1,1]上的單調(diào)性;
(Ⅲ)解不等式f(2x-1)+f(x)<0.
f
(
x
)
=
x
x
2
+
m
+
n
【考點】奇偶性與單調(diào)性的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:299引用:8難度:0.6
相似題
-
1.設(shè)f(x)是連續(xù)的偶函數(shù),且當x>0時,f(x)是單調(diào)函數(shù),則滿足f(x)=f(
)的所有x之和為( ?。?/h2>x+3x+4A.-8 B.-3 C.8 D.3 發(fā)布:2024/12/29 13:30:1組卷:119引用:8難度:0.7 -
2.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,1)上單調(diào)遞增的函數(shù)是( ?。?/h2>
A.y=x?|x| B.y=sinx C. y=(12)|x|D.y=-cos(π?x) 發(fā)布:2024/12/29 4:0:1組卷:30引用:2難度:0.9 -
3.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x∈(0,+∞)時,f(x)=2log2(2x+1)-1,則下列說法正確的是( ?。?/h2>
A. f(-72)=5B.當x∈(-∞,0)時,f(x)=1-2log2(-2x+1) C.f(x)在R上單調(diào)遞增 D.不等式f(x)≥1的解集為 [12,+∞)發(fā)布:2024/12/28 23:30:2組卷:62引用:8難度:0.6
把好題分享給你的好友吧~~