試卷征集
加入會(huì)員
操作視頻

綜合與實(shí)踐
綜合實(shí)踐課上,老師讓同學(xué)們以“三角形紙片的折疊”為主題開展數(shù)學(xué)活動(dòng),類比探究一種特殊四邊形的定義、性質(zhì)、判定和應(yīng)用.
【操作發(fā)現(xiàn)】
對(duì)折△ABC(AB>AC),使點(diǎn)C落在邊AB上的點(diǎn)E處,得到折痕AD,把紙片展平,如圖1.小明發(fā)現(xiàn)四邊形AEDC滿足:AE=AC,DE=DC.查閱相關(guān)資料得知,像這樣的有兩組鄰邊分別相等的四邊形叫作“箏形”.
【類比探究】
借助學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),通過觀察、實(shí)驗(yàn)、歸納、類比、猜想、證明等方法,小宛同學(xué)對(duì)“箏形”的性質(zhì)和判定方法進(jìn)行了探究.
請(qǐng)根據(jù)示例圖形,對(duì)比表格內(nèi)容完成相關(guān)問題.
四邊形 示例圖形 對(duì)稱性 對(duì)角線
平行
四邊形
菁優(yōu)網(wǎng) 是中心對(duì)稱圖形 兩組對(duì)邊分別平行,兩組對(duì)邊分別相等. 兩組對(duì)角分別相等 對(duì)角線互相平分.
菱形 菁優(yōu)網(wǎng) 兩組鄰邊分別相等 有一組對(duì)角相等
(1)表格中①、②處應(yīng)分別填寫的內(nèi)容是:
是中心對(duì)稱圖形也是軸對(duì)稱圖形
是中心對(duì)稱圖形也是軸對(duì)稱圖形
;②
對(duì)角線互相垂直平分
對(duì)角線互相垂直平分

(2)證明箏形有關(guān)對(duì)角線的性質(zhì).
已知:如圖2,在箏形AEDC中,AE=AC,DE=DC,對(duì)角線AD、EC交于點(diǎn)O.
求證:
AD⊥EC,OE=OC,∠EAO=∠CAO,∠ADE=∠ADC
AD⊥EC,OE=OC,∠EAO=∠CAO,∠ADE=∠ADC

證明:
(3)寫出這類“箏形”的一條判定方法(除“箏形”的定義外):
對(duì)角線平分一組對(duì)角的四邊形是“箏形”
對(duì)角線平分一組對(duì)角的四邊形是“箏形”

【遷移應(yīng)用】
(4)如圖3,在Rt△ABC中,∠A=90°,∠B=30°,點(diǎn)D、E分別是邊BC、AB上的動(dòng)點(diǎn),當(dāng)四邊形AEDC為箏形時(shí),直接寫出∠BDE的度數(shù).
菁優(yōu)網(wǎng)

【考點(diǎn)】四邊形綜合題
【答案】是中心對(duì)稱圖形也是軸對(duì)稱圖形;對(duì)角線互相垂直平分;AD⊥EC,OE=OC,∠EAO=∠CAO,∠ADE=∠ADC;對(duì)角線平分一組對(duì)角的四邊形是“箏形”
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:148引用:3難度:0.3
相似題
  • 菁優(yōu)網(wǎng)1.有這樣一個(gè)問題:如圖,在四邊形ABCD中,AB=AD,CB=CD,我們把這種兩組鄰邊分別相等的四邊形叫做箏形,請(qǐng)?zhí)骄抗~形的性質(zhì)和判定方法.
    小南根據(jù)學(xué)習(xí)四邊形的經(jīng)驗(yàn),對(duì)箏形的性質(zhì)和判定方法進(jìn)行了探究.
    下面是小南的探究過程:
    (1)由箏形的定義可知,箏形的邊的性質(zhì)時(shí):箏形的兩組鄰邊分別相等,關(guān)于箏形的角的性質(zhì),通過測(cè)量,折紙的方法,猜想:箏形有一組對(duì)角相等.
    請(qǐng)將下面證明此猜想的過程補(bǔ)充完整:
    已知:如圖,在箏形ABCD中,AB=AD,CB=CD.
    求證:

    由以上證明可得,箏形的角的性質(zhì)是:箏形有一組對(duì)角相等.
    (2)連接箏形的兩條對(duì)角線,探究發(fā)現(xiàn)箏形的另一條性質(zhì):箏形的一條對(duì)角線平分另一條對(duì)角線,結(jié)合圖形,寫出箏形的其他性質(zhì)(一條即可):

    (3)箏形的定義是判定一個(gè)四邊形為箏形的方法之一,試判斷命題“一組對(duì)角相等,一條對(duì)角線平分另一條對(duì)角線的四邊形是”是否成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)舉出一個(gè)反例,畫出圖形,并加以證明.

    發(fā)布:2024/11/7 8:0:2組卷:134引用:1難度:0.1
  • 菁優(yōu)網(wǎng)2.如圖,四邊形ABCD中,AD=CD,AB=CB.我們把這種兩組鄰邊分別相等的凸四邊形叫做箏形.AC,BD叫做箏形的對(duì)角線.請(qǐng)你通過觀察、測(cè)量、折紙等方法進(jìn)行探究,并回答以下問題:
    (1)判斷下列結(jié)論是否正確;
    a.∠DAB=∠DCB;

    b.∠ABC=∠ADC;

    c.BD分別平分∠ABC和∠ADC

    d.箏形是軸對(duì)稱圖形,它有兩條對(duì)稱軸.

    (2)請(qǐng)你選擇下列問題中的一個(gè)進(jìn)行證明:
    a.從(1)中選擇一個(gè)正確的結(jié)論進(jìn)行證明;
    b.通過探究,再找到一條箏形的性質(zhì),并進(jìn)行證明.

    發(fā)布:2024/11/7 8:0:2組卷:108引用:2難度:0.3
  • 3.從圖1的風(fēng)箏圖形可以抽象出幾何圖形,我們把這種幾何圖形叫做“箏形”.具體定義如下:如圖2,在四邊形ABCD中,AB=AD,BC=DC,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”.
    菁優(yōu)網(wǎng)
    (1)結(jié)合圖3,通過觀察、測(cè)量,可以猜想“箏形”具有諸如“AC平分∠BAD和∠BCD”這樣的性質(zhì),請(qǐng)結(jié)合圖形,再寫出兩條“箏形”的性質(zhì):


    (2)從你寫出的兩條性質(zhì)中,任選一條“箏形”的性質(zhì)給出證明.

    發(fā)布:2024/11/7 8:0:2組卷:221引用:7難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營(yíng)許可證出版物經(jīng)營(yíng)許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正