當(dāng)前位置:
試題詳情
某農(nóng)科所對(duì)冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節(jié)大豆新品種一天內(nèi)發(fā)芽數(shù)之間的關(guān)系進(jìn)行了分析研究,他們分別記錄了12月1日至12月6日每天晝夜最高、最低的溫度(如圖1),以及實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù)情況(如圖2),得到如下資料:
(1)請(qǐng)畫出發(fā)芽數(shù)y與溫差x的散點(diǎn)圖;
(2)若建立發(fā)芽數(shù)y與溫差x之間的線性回歸模型,請(qǐng)用相關(guān)系數(shù)說明建立模型的合理性;
(3)①求出發(fā)芽數(shù)y與溫差x之間的回歸方程?y=?a+?bx(系數(shù)精確到0.01);
②若12月7日的晝夜溫差為8℃,通過建立的y關(guān)于x的回歸方程,估計(jì)該實(shí)驗(yàn)室12月7日當(dāng)天100顆種子的發(fā)芽數(shù).
參考數(shù)據(jù):6∑i=1xi=75, 6∑i=1yi=162,6∑i=1xiyi=2051,6∑i=1xi2-6x2≈4.2,6∑i=1yi2-6y2≈6.5.
參考公式:
相關(guān)系數(shù):r=n∑i=1xiyi-nx?y(n∑i=1xi2-nx2)(n∑i=1yi2-ny2)(當(dāng)|r|>0.75時(shí),具有較強(qiáng)的相關(guān)關(guān)系).
回歸方程?y=?a+?bx中斜率和截距計(jì)算公式:?b=n∑i=1xiyi-nx?yn∑i=1xi2-nx2,?a=y-?bx.
?
y
=
?
a
+
?
b
x
6
∑
i
=
1
x
i
=
75
,
6
∑
i
=
1
y
i
=
162
,
6
∑
i
=
1
x
i
y
i
6
∑
i
=
1
x
i
2
-
6
x
2
6
∑
i
=
1
y
i
2
-
6
y
2
n
∑
i
=
1
x
i
y
i
-
n
x
?
y
(
n
∑
i
=
1
x
i
2
-
n
x
2
)
(
n
∑
i
=
1
y
i
2
-
n
y
2
)
?
y
=
?
a
+
?
b
x
?
b
n
∑
i
=
1
x
i
y
i
-
n
x
?
y
n
∑
i
=
1
x
i
2
-
n
x
2
?
a
y
-
?
b
x
【考點(diǎn)】經(jīng)驗(yàn)回歸方程與經(jīng)驗(yàn)回歸直線.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/29 12:0:2組卷:181引用:5難度:0.5
相似題
-
1.某科研機(jī)構(gòu)為了了解氣溫對(duì)蘑菇產(chǎn)量的影響,隨機(jī)抽取了某蘑菇種植大棚12月份中5天的日產(chǎn)量y(單位:kg)與該地當(dāng)日的平均氣溫x(單位:℃)的數(shù)據(jù),得到如圖散點(diǎn)圖:
其中A(3,2),B(5,10),C(8,11),D(9,13),E(10,14).
(1)求出y關(guān)于x的線性回歸方程;
(2)若該地12月份某天的平均氣溫為6℃,用(1)中所求的回歸方程預(yù)測(cè)該蘑菇種植大棚當(dāng)日的產(chǎn)量.
附:線性回歸直線方程中,?y=?bx+?a,?b=n∑i=1xiyi-nxyn∑i=1x2i-nx2.?a=y-?bx發(fā)布:2024/12/29 11:30:2組卷:103引用:3難度:0.7 -
2.已知x與y之間的一組數(shù)據(jù):
x 0 1 2 3 y 1 3 5 7 =bx+a必過點(diǎn).?y發(fā)布:2024/12/29 11:0:2組卷:235引用:59難度:0.7 -
3.兩個(gè)線性相關(guān)變量x與y的統(tǒng)計(jì)數(shù)據(jù)如表:
x 9 9.5 10 10.5 11 y 11 10 8 6 5 =?yx+40,則相應(yīng)于點(diǎn)(9,11)的殘差為 .?b發(fā)布:2024/12/29 12:0:2組卷:112引用:8難度:0.7
把好題分享給你的好友吧~~