已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且a4=7,a1=1,a1+b3=a22,a2b3=4a3+b2(n∈N+).
(1)求{an},{bn}的通項(xiàng)公式;
(2)已知cn=anbn,n為奇數(shù) a2n+1anan+2,n為偶數(shù)
,求數(shù)列{cn}的前2n項(xiàng)和T2n;
(3)求證:n∑i=11bi-1<2(i∈N*).
a
1
+
b
3
=
a
2
2
c
n
=
a n b n , n 為奇數(shù) |
a 2 n + 1 a n a n + 2 , n 為偶數(shù) |
n
∑
i
=
1
1
b
i
-
1
<
2
【考點(diǎn)】錯(cuò)位相減法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/17 3:0:2組卷:244引用:2難度:0.2
相似題
-
1.已知數(shù)列{an}是公差不為0的等差數(shù)列,前n項(xiàng)和為Sn,S9=144,a3是a1與a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿(mǎn)足+log2bn=0,若cn=anbn,求數(shù)列{cn}前n項(xiàng)和為T(mén)n.an-13發(fā)布:2024/12/29 12:0:2組卷:129引用:2難度:0.5 -
2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2n-1+1,令cn=an?bn,求數(shù)列{cn}的前n項(xiàng)和Tn.發(fā)布:2024/12/29 6:0:1組卷:215引用:3難度:0.4 -
3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.bn=3n-1發(fā)布:2024/12/29 5:30:3組卷:434引用:12難度:0.6
把好題分享給你的好友吧~~