閱讀下列材料,回答問題:如圖,點A(x1,y1),點B(x2,y2),以AB為斜邊作Rt△ABC,則C(x2,y1),于是AC=|x1-x2|,BC=|y1-y2|,所以AB=(x1-x2)2+(y1-y2)2,反之,可將代數(shù)式(x1-x2)2+(y1-y2)2的值看作點(x1,y1)到點(x2,y2)的距離.例如:x2-2x+y2+2y+2=(x2-2x+1)+(y2+2y+1)=(x-1)2+(y+1)2=(x-1)2+[y-(-1)]2.故代數(shù)式x2-2x+y2+2y+2的值看作點(x,y)到點(1,-1)的距離.已知:代數(shù)式x2-2x+y2+16y+65+x2+4x+y2-4y+8.
(1)該代數(shù)式的值可看作點(x,y)到點 (1,-8)(1,-8)、(-2,2)(-2,2)的距離之和.
(2)求出這個代數(shù)式的最小值.
(3)在(2)的條件下求出此時y與x之間的函數(shù)關(guān)系式并寫出x的取值范圍.
AB
=
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
x
2
-
2
x
+
y
2
+
2
y
+
2
(
x
2
-
2
x
+
1
)
+
(
y
2
+
2
y
+
1
)
(
x
-
1
)
2
+
(
y
+
1
)
2
(
x
-
1
)
2
+
[
y
-
(
-
1
)
]
2
x
2
-
2
x
+
y
2
+
2
y
+
2
x
2
-
2
x
+
y
2
+
16
y
+
65
+
x
2
+
4
x
+
y
2
-
4
y
+
8
【考點】三角形綜合題.
【答案】(1,-8);(-2,2)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:25引用:3難度:0.3
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:184引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當(dāng)點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時,DF∥AC;當(dāng)∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1692引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當(dāng)其中一個點到達終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).
(1)當(dāng)t=秒時,PQ平分線段BD;
(2)當(dāng)t=秒時,PQ⊥x軸;
(3)當(dāng)時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:143引用:3難度:0.1