試卷征集
加入會員
操作視頻

綜合與實踐二輪復習中,劉老師以“最值問題”為專題引導同學們進行復習探究.
問題模型:等腰三角形ABC,∠BAC=120°,AB=AC=2.
探究1:
(1)如圖1,點D為等腰三角形ABC底邊BC上一個動點,連接AD,則AD的最小值為
1
1
,判斷依據(jù)為
垂線段最短
垂線段最短
;
探究2:
(2)在探究1的結論下,繼續(xù)探究,作∠BAD的平分線AE交BC于點E,點F,G分別為AE,AD上一個動點,求DF+FG的最小值;
探究3
(3)探究在探究1的結論下,繼續(xù)探究,點M為線段CD上一個動點,連接AM,將AM順時針旋轉 60°,得到線段AN,連接ND,求線段DN的最小值.?

【考點】三角形綜合題
【答案】1;垂線段最短
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:315引用:4難度:0.2
相似題
  • 1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.

    (1)如圖1,求證:∠BED=∠AFD;
    (2)如圖1,求證:BE2+CF2=EF2
    (3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.

    發(fā)布:2024/12/23 14:0:1組卷:184引用:3難度:0.2
  • 2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(當點D落在射線FB上時停止旋轉).
    (1)當∠AFD=
    °時,DF∥AC;當∠AFD=
    °時,DF⊥AB;
    (2)在旋轉過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內角相等,求∠APD的度數(shù);
    (3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.

    發(fā)布:2024/12/23 18:30:1組卷:1692引用:10難度:0.1
  • 3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設運動時間為t(秒).

    (1)當t=
    秒時,PQ平分線段BD;
    (2)當t=
    秒時,PQ⊥x軸;
    (3)當
    PQC
    =
    1
    2
    D
    時,求t的值.

    發(fā)布:2024/12/23 15:0:1組卷:143引用:3難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正