64個正數(shù)排成8行8列,如圖所示:在符號aij(1≤i≤8,1≤j≤8)中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù).已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等)且a11=12,a24=1,a32=14.
(1)求a12和a13的值;
(2)記第n行各項(xiàng)之和為An(1≤n≤8),數(shù)列{an},{bn},{cn}滿足an=36An,mbn+1=2(an+mbn)(m為非零常數(shù)),cn=bnan,且c21+c27=100,求c1+c2+…c7的取值范圍.
1
2
1
4
36
A
n
c
n
=
b
n
a
n
c
2
1
+
c
2
7
=
100
【考點(diǎn)】等差數(shù)列與等比數(shù)列的綜合;數(shù)列的求和.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:33引用:1難度:0.1
相似題
-
1.若等差數(shù)列{an}的公差不為0,數(shù)列{an}中的部分項(xiàng)組成的數(shù)列
,ak1,ak2…,ak3,…恰為等比數(shù)列,其中k1=1,k2=4,k3=10,則滿足kn>100的最小的整數(shù)n是( ?。?/h2>akn發(fā)布:2024/12/29 3:0:1組卷:109引用:3難度:0.5 -
2.已知{an}是等差數(shù)列,公差d≠0,a1=1,且、a1,a3,a9成等比數(shù)列,則數(shù)列
的前n項(xiàng)和Sn=.{2an}發(fā)布:2024/12/29 7:0:1組卷:69引用:3難度:0.7 -
3.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=2,且2a1,a3,3a2成等差數(shù)列.
(Ⅰ) 求等比數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 若數(shù)列{bn}滿足bn=11-2log2an,求數(shù)列{bn}的前n項(xiàng)和Tn的最大值.發(fā)布:2024/12/29 5:30:3組卷:281引用:13難度:0.5
把好題分享給你的好友吧~~