已知函數(shù)f(x)=-13x3+a2x2-2x(a∈R).
(Ⅰ)當a=3時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意x∈(1,+∞)都有f'(x)<a-2成立,求實數(shù)a的取值范圍;
(Ⅲ)若過點(0,-13)可作函數(shù)y=f(x)圖象的三條不同切線,求實數(shù)a的取值范圍.
f
(
x
)
=
-
1
3
x
3
+
a
2
x
2
-
2
x
(
a
∈
R
)
(
0
,-
1
3
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:240引用:2難度:0.1
相似題
-
1.已知函數(shù)
,則f(x)的單調(diào)遞減區(qū)間為( ?。?/h2>f(x)=xlnx+3發(fā)布:2025/1/7 12:30:6組卷:106引用:2難度:0.9 -
2.已知函數(shù)
.f(x)=12x2-a2+1ax+lnx
(1)當a=2時,求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)討論函數(shù)f(x)的單調(diào)性.發(fā)布:2024/12/29 9:30:1組卷:109引用:4難度:0.5 -
3.已知函數(shù)
.f(x)=lnxx-x
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)0<t<1,求f(x)在區(qū)間上的最小值.[t,1t]發(fā)布:2024/12/29 12:0:2組卷:88引用:2難度:0.5
相關(guān)試卷