已知F1,F2是橢圓C:x2a2+y2b2=1(a>b>0)的左、右焦點,點P(-2,33)在橢圓C上,且PF1⊥F1F2.
(1)求橢圓C的方程;
(2)已知A,B兩點的坐標分別是(0,2),(-1,0),若過點A的直線l與橢圓C交于M,N兩點,且以MN為直徑的圓過點B,求出直線l的所有方程.
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
P
(
-
2
,
3
3
)
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/2 8:0:9組卷:58引用:4難度:0.5
相似題
-
1.已知橢圓E:
的右焦點為F(3,0),過點F的直線交橢圓于A,B兩點,若AB的中點坐標為(1,-1),則E的方程為( )x2a2+y2b2=1(a>b>0)發(fā)布:2024/12/3 9:0:2組卷:926難度:0.7 -
2.已知
為橢圓A(-1,233),B(1,-233),P(x0,y0)上不同的三點,直線l:x=2,直線PA交l于點M,直線PB交l于點N,若S△PAB=S△PMN,則x0=( ?。?/h2>C:x23+y22=1發(fā)布:2024/12/6 6:0:1組卷:231引用:6難度:0.5 -
3.如果橢圓
的弦被點(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:451引用:3難度:0.6
把好題分享給你的好友吧~~