試卷征集
加入會(huì)員
操作視頻

如圖1,菱形ABCD中∠ABC=120°,動(dòng)點(diǎn)E,F(xiàn)在邊AD,AB上(不含端點(diǎn)),且存在實(shí)數(shù)λ使
EF
=
λ
DB
,沿EF將△AEF向上折起得到△PEF,使得平面PEF⊥平面BCDEF,如圖2所示.
菁優(yōu)網(wǎng)
(1)若BF⊥PD,設(shè)三棱錐P-BCD和四棱錐P-BDEF的體積分別為V1,V2,求
V
1
V
2
;
(2)當(dāng)點(diǎn)E的位置變化時(shí),平面EPF與平面BPF的夾角(銳角)的余弦值是否為定值,若是,求出該余弦值,若不是,說(shuō)明理由;

【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/20 6:0:3組卷:112引用:3難度:0.3
相似題
  • 菁優(yōu)網(wǎng)1.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=
    5

    (1)求證:平面EBC⊥平面EBD;
    (2)設(shè)M為線段EC上一點(diǎn),3
    EM
    =
    EC
    ,求二面角M-BD-E的平面角的余弦值.

    發(fā)布:2025/1/2 8:0:1組卷:557引用:6難度:0.3
  • 菁優(yōu)網(wǎng)2.在如圖所示的多面體中,平面ABB1A1⊥平面ABCD,四邊形ABB1A1是邊長(zhǎng)為2的菱形,四邊形ABCD為直角梯形,四邊形BCC1B1為平行四邊形,且AB∥CD,AB⊥BC,CD=1
    (1)若E,F(xiàn)分別為A1C,BC1的中點(diǎn),求證:EF⊥平面AB1C1
    (2)若∠A1AB=60°,AC1與平面ABCD所成角的正弦值
    5
    5
    ,求二面角A1-AC1-D的余弦值.

    發(fā)布:2025/1/2 8:0:1組卷:143引用:2難度:0.4
  • 菁優(yōu)網(wǎng)3.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
    1
    2
    CD,M為AE的中點(diǎn).
    (1)證明:AC∥平面MDF;
    (2)求平面MDF與平面BCF的夾角的大?。?/h2>

    發(fā)布:2025/1/2 8:0:1組卷:141引用:1難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正