某校在體育節(jié)期間進(jìn)行趣味投籃比賽,設(shè)置了A,B兩種投籃方案.方案A:罰球線投籃,投中可以得2分,投不中不得分;方案B:三分線外投籃,投中可以得3分,投不中不得分.甲、乙兩位同學(xué)參加比賽,選擇方案A投中的概率都為p0(0<p0<1),選擇方案B投中的概率都為13,每人有且只有一次投籃機(jī)會(huì),投中與否互不影響.
(1)若甲同學(xué)選擇方案A投籃,乙同學(xué)選擇方案B投籃,記他們的得分之和為X,P(X≤3)=45,求X的分布列;
(2)若甲、乙兩位同學(xué)都選擇方案A或都選擇方案B投籃,問(wèn):他們都選擇哪種方案投籃,得分之和的均值較大?
1
3
4
5
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:24引用:2難度:0.5
相似題
-
1.每年5月17日為國(guó)際電信日,某市電信公司每年在電信日當(dāng)天對(duì)辦理應(yīng)用套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計(jì)結(jié)果繪出電信日當(dāng)天參與活動(dòng)的統(tǒng)計(jì)圖,現(xiàn)將頻率視為概率.
(1)求某兩人選擇同一套餐的概率;
(2)若用隨機(jī)變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學(xué)期望.發(fā)布:2024/12/18 8:0:1組卷:147引用:5難度:0.1 -
2.某工廠有甲、乙、丙三條生產(chǎn)線同時(shí)生產(chǎn)同一產(chǎn)品,這三條生產(chǎn)線生產(chǎn)產(chǎn)品的次品率分別為6%,5%,4%,假設(shè)這三條生產(chǎn)線產(chǎn)品產(chǎn)量的比為5:7:8,現(xiàn)從這三條生產(chǎn)線上共任意選取100件產(chǎn)品,則次品數(shù)的數(shù)學(xué)期望為 .
發(fā)布:2024/12/15 19:0:2組卷:104引用:2難度:0.6 -
3.隨機(jī)變量X的分布列如表所示,若
,則D(3X-2)=.E(X)=13X -1 0 1 P 16a b 發(fā)布:2024/12/18 18:30:1組卷:212引用:9難度:0.6
把好題分享給你的好友吧~~