2023年,全國政協(xié)十四屆一次會議于3月4日下午3時在人民大會堂開幕,3月11日下午閉幕,會期7天半;十四屆全國人大一次會議于3月5日上午開幕,13日上午閉幕,會期8天半.為調(diào)查學(xué)生對兩會相關(guān)知識的了解情況,某高中學(xué)校開展了兩會知識問答活動,現(xiàn)從全校參與該活動的學(xué)生中隨機(jī)抽取320名學(xué)生,他們的得分的頻率分布折線圖如下.
(1)若此次知識問答的得分X~N(μ,σ2),用樣本來估計總體,設(shè)μ,σ分別為被抽取的320名學(xué)生得分的平均數(shù)和標(biāo)準(zhǔn)差,求P(50.5<X≤94)的值;
(2)學(xué)校對這些被抽取的320名學(xué)生進(jìn)行獎勵,獎勵方案如下:用頻率估計概率,得分小于或等于55的學(xué)生獲得1次抽獎機(jī)會,得分高于55的學(xué)生獲得2次抽獎機(jī)會.假定每次抽獎抽到價值10元的學(xué)習(xí)用品的概率為34,抽到價值20元的學(xué)習(xí)用品的概率為14.從這320名學(xué)生中任取一位,記該同學(xué)在抽獎活動中獲得學(xué)習(xí)用品的價值總額為ξ元,求ξ的分布列和數(shù)學(xué)期望(用分?jǐn)?shù)表示),并估算此次抽獎要準(zhǔn)備的學(xué)習(xí)用品的價值總額.
參考數(shù)據(jù):P(μ-σ<X≤μ+σ)≈0.6827,P(μ-2σ<X≤μ+2σ)≈0.9545,P(μ-3σ<X≤μ+3σ)≈0.9973,210≈14.5,0.375=38.
3
4
1
4
210
≈
14
.
5
0
.
375
=
3
8
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/16 8:0:9組卷:170引用:6難度:0.5
相似題
-
1.中國在第75屆聯(lián)合國大會上承諾,將采取更加有力的政策和措施,力爭于2030年之前使二氧化碳的排放達(dá)到峰值,努力爭取2060年之前實現(xiàn)碳中和(簡稱“雙碳目標(biāo)”),新能源汽車、電動汽車對于實現(xiàn)“雙碳目標(biāo)”具有重要的作用,為了解某一地區(qū)電動汽車銷售情況,一機(jī)構(gòu)根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到電動汽車銷量y(單位:萬臺)關(guān)于x(年份)的線性回歸方程為y=4.7x-9459.2,且銷量y的方差為
,年份x的方差為s2y=2545.s2x=2
(1)求y與x的相關(guān)系數(shù)r,并據(jù)此判斷電動汽車銷量y與年份x的相關(guān)性強(qiáng)弱;
(2)該機(jī)構(gòu)還調(diào)查了該地區(qū)90位購車車主的性別與購車種類情況,得到的數(shù)據(jù)如表:性別 購買非電動汽車 購買電動汽車 總計 男性 39 6 45 女性 30 15 45 總計 69 21 90
(3)在購買電動汽車的車主中按照性別進(jìn)行分層抽樣抽取7人,再從這7人中隨機(jī)抽取3人,記這3人中,男性的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
①參考數(shù)據(jù):;5×127=635≈25
②參考公式:(i)線性回歸方程:,其中y=?bx+?a;?b=n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2,?a=y-?bx
(ii)相關(guān)系數(shù):,若r>0.9,則可判斷y與x線性相關(guān)較強(qiáng).r=n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2n∑i=1(yi-y)2
(iii),其中n=a+b+c+d.附表:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)發(fā)布:2024/12/10 8:0:1組卷:75引用:1難度:0.4 -
2.“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:
年份 2014 2015 2016 2017 2018 銷量(萬臺) 8 10 13 25 24 購置傳統(tǒng)燃油車 購置新能源車 總計 男性車主 6 24 女性車主 2 總計 30
(2)請將上述2×2列聯(lián)表補(bǔ)充完整,并判斷是否有90%的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān);
(3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區(qū)購置新能源乘用車的車主性別比例,從該地區(qū)購置新能源乘用車的車主中隨機(jī)選取50人,記選到女性車主的人數(shù)為X,求X的數(shù)學(xué)期望與方差.
參考公式:,r=n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2n∑i=1(yi-y)2,其中n=a+b+c+d.K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),若r>0.9,則可判斷y與x線性相關(guān).635≈25
附表:P(K2≥k0) 0.10 0.05 0.025 0.010 0.001 k0 2.706 3.841 5.024 6.635 10.828 發(fā)布:2024/12/10 8:0:1組卷:191引用:6難度:0.4 -
3.已知離散型隨機(jī)變量X的方差為1,則D(3X+1)=.
發(fā)布:2024/12/20 13:30:1組卷:90引用:3難度:0.9
把好題分享給你的好友吧~~