甲、乙兩人進(jìn)行投籃比賽,分輪次進(jìn)行,每輪比賽甲、乙各投籃一次.比賽規(guī)定:若甲投中,乙未投中,甲得1分,乙得-1分;若甲未投中,乙投中,甲得-1分,乙得1分;若甲、乙都投中或都未投中,甲、乙均得0分.當(dāng)甲、乙兩人累計得分的差值大于或等于4分時,就停止比賽,分?jǐn)?shù)多的獲勝:4輪比賽后,若甲、乙兩人累計得分的差值小于4分也停止比賽,分?jǐn)?shù)多的獲勝,分?jǐn)?shù)相同則平局、甲、乙兩人投籃的命中率分別為0.5和0.6,且互不影響.一輪比賽中甲的得分記為X.
(1)求X的分布列;
(2)求甲、乙兩人最終平局的概率;
(3)記甲、乙一共進(jìn)行了Y輪比賽,求Y的分布列及期望.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/16 8:0:9組卷:470引用:9難度:0.5
相似題
-
1.已知隨機變量ξ1和ξ2的分布列如表:
ξ1 0 5 10 p 0.33 0.34 0.33 ξ2 1 4 7 p 0.01 0.98 0.01 A.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2) B.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2) 發(fā)布:2024/12/27 19:0:4組卷:117引用:1難度:0.7 -
2.每年5月17日為國際電信日,某市電信公司每年在電信日當(dāng)天對辦理應(yīng)用套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計結(jié)果繪出電信日當(dāng)天參與活動的統(tǒng)計圖,現(xiàn)將頻率視為概率.
(1)求某兩人選擇同一套餐的概率;
(2)若用隨機變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學(xué)期望.發(fā)布:2024/12/18 8:0:1組卷:147引用:5難度:0.1 -
3.隨機變量X的分布列如表所示,若
,則D(3X-2)=.E(X)=13X -1 0 1 P 16a b 發(fā)布:2024/12/18 18:30:1組卷:212引用:9難度:0.6
把好題分享給你的好友吧~~