當(dāng)前位置:
2013-2014學(xué)年廣東省仲元中學(xué)、中山一中、南海桂城中學(xué)等七校聯(lián)考高二(下)入學(xué)數(shù)學(xué)試卷(文科)>
試題詳情
已知點(diǎn)M(4,0)、N(1,0),若動(dòng)點(diǎn)P滿足MN ? MP=6|NP|.
(1)求動(dòng)點(diǎn)P的軌跡C;
(2)在曲線C上求一點(diǎn)Q,使點(diǎn)Q到直線l:x+2y-12=0的距離最?。?/h1>
MN
?
MP
=
6
|
NP
|
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:629引用:6難度:0.5
相似題
-
1.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
2.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:66引用:5難度:0.7 -
3.若過點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7