“黃金三角形”是幾何歷史上的瑰寶,它有兩種類型,其中一種是頂角為36°的等腰三角形,暫且稱為“黃金三角形A”.如圖所示,已知五角星是由5個“黃金三角形A”與1個正五邊形組成,其中sin18°=5-14,則陰影部分面積與五角形面積的比值為( ?。?/h1>
sin
18
°=
5
-
1
4
【考點】三角形中的幾何計算.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:160引用:2難度:0.4
相似題
-
1.如圖,在△ABC中,已知B=45°,D是BC邊上的一點,AD=4,AC=2
,DC=2.7
(1)求cos∠ADC;
(2)求AB.發(fā)布:2024/12/29 12:0:2組卷:62引用:5難度:0.5 -
2.在△ABC中,點D為邊AC上靠近A的四等分點,∠ABD=∠ACB,CB⊥BD,S△ABC=15,則AB=( ?。?/h2>
發(fā)布:2024/12/29 11:30:2組卷:65引用:2難度:0.5 -
3.在△ABC中,角所對的邊分別為a,b,c,給出下列四個命題中,其中正確的命題為( ?。?/h2>
發(fā)布:2024/12/29 12:0:2組卷:166引用:13難度:0.6