問題背景:如圖1,在四邊形ACBD中,∠ACB=∠ADB=90°,AD=BD,探究線段AC、BC、CD之間的數(shù)量關(guān)系.
小楊同學探究此問題的思路是:將△ACD繞點D逆時針旋轉(zhuǎn)90°到△DBN處,點A、C分別落在點B、N處(如圖2),∠DBN=∠DAC,∠BDN=∠ADC;因為在四邊形ACBD中,∠ACB=∠ADB=90°,所以∠DAC+∠DBC=180°,所以∠DBN+∠DBC=180°,點C、B、N在同一條直線上:易證△CDN是等腰直角三角形,所以CN=2CD,從而得出結(jié)論:AC+BC=2CD.
?簡單應(yīng)用:利用已學知識和小楊得出的結(jié)論,解決以下問題:
(1)如圖1,∠ACB=∠ADB=90°,AD=BD,若AB=13,AC=12,求CD的長;
(2)如圖3,已知AB是⊙O的直徑,點C、D在⊙O上,?AD=?BD,求證:AC+BC=2CD;
拓展延伸:
(3)如圖4,∠ACB=∠ADB=90°,AC=BC,⊙O是四邊形ABDC的外接圓,若AD=24,BD=7,求CD的長.
2
2
?
AD
=
?
BD
2
【考點】圓的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/24 0:0:9組卷:88引用:2難度:0.5
相似題
-
1.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD?AB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.發(fā)布:2024/12/23 9:0:2組卷:1798引用:34難度:0.7 -
2.如圖,矩形ABCD中,AB=13,AD=6.點E是CD上的動點,以AE為直徑的⊙O與AB交于點F,過點F作FG⊥BE于點G.
(1)當E是CD的中點時:tan∠EAB的值為;
(2)在(1)的條件下,證明:FG是⊙O的切線;
(3)試探究:BE能否與⊙O相切?若能,求出此時BE的長;若不能,請說明理由.發(fā)布:2024/12/23 12:0:2組卷:641引用:5難度:0.4 -
3.在平面直角坐標系xOy中,⊙O的半徑為1,P是坐標系內(nèi)任意一點,點P到⊙O的距離SP的定義如下:若點P與圓心O重合,則SP為⊙O的半徑長;若點P與圓心O不重合,作射線OP交⊙O于點A,則SP為線段AP的長度.
圖1為點P在⊙O外的情形示意圖.
(1)若點B(1,0),C(1,1),,則SB=D(0,13)
(2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;
(3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在⊙O內(nèi)且ST≥SR,直接寫出滿足條件的線段PQ長度的最大值.發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
把好題分享給你的好友吧~~