試卷征集
加入會員
操作視頻

勾股定理是人類最偉大的十個科學(xué)發(fā)現(xiàn)之一,西方國家稱之為畢達哥拉斯定理.在我國古書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(如圖1),后人稱之為“趙爽弦圖”,流傳至今.勾股定理內(nèi)容為:如果直角三角形的兩條直角邊分別為a,b,斜邊為c,那么a2+b2=c2
菁優(yōu)網(wǎng)(1)如圖2、3、4,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個圖形中面積關(guān)系滿足S1+S2=S3的有
3
3
個;
(2)如圖5所示,分別以直角三角形三邊為直徑作半圓,設(shè)圖中兩個月形圖案(圖中陰影部分)的面積分別為S1,S2,直角三角形面積為S3,請判斷S1,S2,S3的關(guān)系并證明;
(3)如果以正方形一邊為斜邊向外作直角三角形,再以該直角三角形的兩直角邊分別向外作正方形,重復(fù)這一過程就可以得到如圖6所示的“勾股樹”.在如圖7所示的“勾股樹”的某部分圖形中,設(shè)大正方形M的邊長為定值m,四個小正方形A,B,C,D的邊長分別為a,b,c,d,已知∠1=∠2=∠3=∠α,則當∠α變化時,回答下列問題:(結(jié)果可用含m的式子表示)
①a2+b2+c2+d2=
m2
m2

②b與c的關(guān)系為
b=c
b=c
,a與d的關(guān)系為
a+d=m
a+d=m

【考點】勾股定理的證明
【答案】3;m2;b=c;a+d=m
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/24 14:0:35組卷:931引用:3難度:0.3
相似題
  • 菁優(yōu)網(wǎng)1.如圖所示的“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.該圖由四個全等的直角三角形和一個小正方形拼成一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=10,大正方形面積為25,則小正方形邊長為( ?。?/h2>

    發(fā)布:2024/11/1 11:30:2組卷:1204引用:7難度:0.5
  • 2.請閱讀下面文字并完成相關(guān)任務(wù).
    勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為“幾何學(xué)的基石”.在我國最早對勾股定理進行證明的是三國時期吳國的數(shù)學(xué)家趙爽.
    (1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,用它可以驗證勾股定理,思路是:大正方形的面積有兩種求法,一種是等于c2,另一種是等于四個直角三角形與一個小正方形的面積之和,即
    1
    2
    ab
    ×
    4
    +
    b
    -
    a
    2
    ,從而得到等式c2=
    1
    2
    ab
    ×
    4
    +
    b
    -
    a
    2
    ,化簡便得結(jié)論a2+b2=c2.這里用兩種求法來表示同一個量從而得到等式或方程的方法,我們稱之為“雙求法”.現(xiàn)在,請你用“雙求法”解決下面問題:
    如圖2,在△ABC中,AD是BC邊上的高,AB=4,AC=5,BC=6,設(shè)BD=x,求x的值.
    菁優(yōu)網(wǎng)?
    (2)2002年在北京召開的國際數(shù)學(xué)家大會會標和2021年在上海召開的國際數(shù)學(xué)教育大會會標,都包含了趙爽的弦圖.如圖3,如果大正方形的面積為18,直角三角形中較短直角邊長為a,較長直角邊長為b,且a2+b2=ab+10,那么小正方形的面積為

    (3)勾股定理本身及其驗證和應(yīng)用過程都體現(xiàn)了一種重要的數(shù)學(xué)思想是

    A.函數(shù)思想
    B.整體思想
    C.分類討論思想
    D.數(shù)形結(jié)合思想

    發(fā)布:2024/10/19 8:0:2組卷:204引用:1難度:0.5
  • 3.勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小明以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖①或圖②擺放時,都可以用“面積法”來證明,下面是小明利用圖①證明勾股定理的過程:將兩個全等的直角三角形按圖①所示擺放,其中∠DAB=90°,求證:a2+b2=c2
    菁優(yōu)網(wǎng)
    證明:連接DB,過點D作BC邊上的高DF,則DF=EC=b-a,FC=DE=b,
    ∵S四邊形ADCB=S△ACD+S△ABC=
    1
    2
    b2+
    1
    2
    ab,
    S四邊形ADCB=S△ADB+S△DCB=
    1
    2
    c2+
    1
    2
    a(b-a)
    1
    2
    b2+
    1
    2
    ab=
    1
    2
    c2+
    1
    2
    a(b-a)
    ∴a2+b2=c2
    請參照上述證法,利用圖②完成下面的證明:
    將兩個全等的直角三角形按圖②所示擺放,其中∠DAB=90°.求證:a2+b2=c2

    發(fā)布:2024/10/20 7:0:2組卷:198引用:1難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正