試卷征集
加入會(huì)員
操作視頻

古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作(圓錐曲線論)是古代世界的科學(xué)成果,著作中有這樣一個(gè)命題:平面內(nèi)與兩個(gè)定點(diǎn)距離之比為常數(shù)k(k>0且k≠1)的點(diǎn)的軌跡為圓.后人將這個(gè)圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0).動(dòng)點(diǎn)P(x,y)滿足
|
PA
|
|
PO
|
=
2
,則動(dòng)點(diǎn)P的軌跡與圓(x-2)2+y2=2的位置關(guān)系是( ?。?/h1>

【答案】D
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/9 11:0:2組卷:50引用:3難度:0.7
相似題
  • 1.已知A是圓x2+(y-1)2=1上的動(dòng)點(diǎn),PA是圓的切線,|PA|=1,則點(diǎn)P的軌跡方程是(  )

    發(fā)布:2024/10/24 15:0:1組卷:71引用:3難度:0.7
  • 2.設(shè)圓x2+y2-2x-15=0的圓心為M,直線l過點(diǎn)N(-1,0)且與x軸不重合,l交圓M于A,B兩點(diǎn),過點(diǎn)N作AM的平行線交BM于點(diǎn)C.
    (1)證明|CM|+|CN|為定值,并寫出點(diǎn)C的軌跡方程;
    (2)設(shè)點(diǎn)C的軌跡為曲線E,直線l1:y=kx與曲線E交于P,Q兩點(diǎn),點(diǎn)R為橢圓C上一點(diǎn),若△PQR是以PQ為底邊的等腰三角形,求△PQR面積的最小值.

    發(fā)布:2024/10/25 5:0:2組卷:136引用:2難度:0.6
  • 3.古希臘著名數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值λ(λ≠1)的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系xOy中,已知A(-4,2),B(2,2),點(diǎn)P滿足
    |
    PA
    |
    |
    PB
    |
    =
    2
    ,設(shè)點(diǎn)P的軌跡為圓C,下列結(jié)論正確的是( ?。?/h2>

    發(fā)布:2024/11/4 6:30:2組卷:292引用:18難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營(yíng)許可證出版物經(jīng)營(yíng)許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正