試卷征集
加入會員
操作視頻

已知雙曲線C:
x
2
a
2
-
y
2
b
2
=
1
a
,
b
0
的離心率為
2
,直線l1
y
=
2
x
+
4
3
與雙曲線C僅有一個公共點.
(1)求雙曲線C的方程
(2)設雙曲線C的左頂點為A,直線l2平行于l1,且交雙曲線C于M,N兩點,求證:△AMN的垂心在雙曲線C上.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:567難度:0.4
相似題
  • 1.已知雙曲線的方程為
    x
    2
    -
    y
    2
    4
    =
    1
    ,過點P(1,0)的直線l與雙曲線只有一個公共點,則l的條數為( ?。?/h2>

    發(fā)布:2024/7/4 8:0:9組卷:12引用:1難度:0.6
  • 2.已知雙曲線C:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =1(a>0,b>0)與雙曲線
    x
    2
    2
    -
    y
    2
    2
    =1有相同的焦點,且C的一條漸近線與直線x-
    3
    y+2=0平行.(1)求雙曲線C的方程;
    (2)若直線l:y=kx+
    2
    與雙曲線C的左、右兩支各有一個公共點,求實數k的取值范圍;
    (3)若直線l:y=kx+
    2
    與雙曲線C僅有一個公共點,求k的取值范圍.

    發(fā)布:2024/7/1 8:0:9組卷:10引用:0難度:0.6
  • 3.已知雙曲線C:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    b
    0
    的離心率為
    5

    (1)求雙曲線C的漸近線方程;
    (2)動直線l分別交雙曲線C的漸近線于A,B兩點(A,B分別在第一、四象限),且△OAB(O為坐標原點)的面積恒為8,是否存在總與直線l有且只有一個公共點的雙曲線C,若存在,求出雙曲線的方程;若不存在,說明理由.

    發(fā)布:2024/6/27 10:35:59組卷:99難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正