已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x.
(Ⅰ)當(dāng)a=1時,求曲線y=g(x)在點(1,g(1))處的切線方程;
(Ⅱ)當(dāng)a>0時,試討論函數(shù)g(x)的單調(diào)性;
(Ⅲ)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于兩點A(x1,y1),B(x2,y2)(x1<x2),證明:1x2<k<1x1.
1
x
2
1
x
1
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:51引用:1難度:0.1
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2