設b>0,數(shù)列{an}滿足a1=b,an=nban-1an-1+n-1(n≥2)
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,2an≤bn+1+1.
nba
n
-
1
a
n
-
1
+
n
-
1
【考點】數(shù)列遞推式;數(shù)列與不等式的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:964引用:3難度:0.5
相似題
-
1.設a,b∈R,數(shù)列{an}滿足a1=a,an+1=an2+b,n∈N*,則( ?。?/h2>
發(fā)布:2024/12/29 12:30:1組卷:3220引用:9難度:0.4 -
2.設Sn為數(shù)列{an}的前n項和,若
,5an+1=5an+2,則S5=( ?。?/h2>a1=65發(fā)布:2024/12/29 11:0:2組卷:157引用:4難度:0.7 -
3.在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設bn=.證明:數(shù)列{bn}是等差數(shù)列;an2n-1
(2)求數(shù)列{an}的通項公式.發(fā)布:2024/12/29 6:30:1組卷:139引用:11難度:0.3
相關(guān)試卷