已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點P(a,b)成中心對稱圖形”的充要條件為“函數(shù)y=f(x+a)-b是奇函數(shù)”.
(1)將函數(shù)g(x)=x3-3x2的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對稱中心的坐標;
(2)求函數(shù)h(x)=log22x4-x圖象對稱中心的坐標;
(3)已知命題:“函數(shù)y=f(x)的圖象關(guān)于某直線成軸對稱圖象”的充要條件為“存在實數(shù)a和b,使得函數(shù)y=f(x+a)-b是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設(shè)的真命題對它進行修改,使之成為真命題(不必證明).
lo
g
2
2
x
4
-
x
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:874引用:11難度:0.5
相似題
-
1.德國著名數(shù)學家狄利克雷在數(shù)學領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,則關(guān)于函數(shù)有如下四個命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中的真命題是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:98引用:2難度:0.5 -
2.德國著名數(shù)學家狄利克雷在數(shù)學領(lǐng)域成就顯著,是解析數(shù)論的創(chuàng)始人之一,以其名命名的函數(shù) f(x)=
稱為狄利克雷函數(shù),則關(guān)于f(x),下列說法正確的是( ?。?/h2>1,x∈Q0,x∈?RQ發(fā)布:2024/12/22 8:0:1組卷:91引用:9難度:0.7 -
3.已知函數(shù)f(x)=
,則關(guān)于函數(shù)f(x)有如下說法:1(x為有理數(shù))0(x為無理數(shù))
①f(x)的圖象關(guān)于y軸對稱;
②方程f(f(x))=x的解只有x=1;
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x∈R恒成立;
④不存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中正確的個數(shù)是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:73引用:1難度:0.3
把好題分享給你的好友吧~~