定義:如圖1,在△ABC中,把AB繞點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當α+β=180°時,我們稱△AB'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
(1)在圖2中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”,若△ABC為等邊三角形,則AD與BC的數(shù)量關(guān)系為:AD=1212BC.
(2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
(3)如圖3,在四邊形ABCD中,∠B=90°,∠A=150°,BC=12,AB=23,AD=6.若四邊形內(nèi)部恰好存在一點P,使△PAB是△PDC的“旋補三角形”,請直接寫出△PDC的“旋補中線”長是 3939.
1
2
1
2
3
39
39
【考點】四邊形綜合題.
【答案】;
1
2
39
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/6 8:0:9組卷:167引用:3難度:0.3
相似題
-
1.如圖,在菱形ABCD中,AB=10,sinB=
,點E從點B出發(fā)沿折線B-C-D向終點D運動.過點E作點E所在的邊(BC或CD)的垂線,交菱形其它的邊于點F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點G在AC上.求證:FA=FG.
(2)若EF=FG,當EF過AC中點時,求AG的長.
(3)已知FG=8,設(shè)點E的運動路程為s.當s滿足什么條件時,以G,C,H為頂點的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:1986引用:3難度:0.1 -
2.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點A作對角線BD的平行線與邊CD的延長線相交于點E.P為邊BD上的一個動點(不與端點B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長和面積;
(3)記△ABP的周長和面積分別為C1和S1,△PDE的周長和面積分別為C2和S2,在點P的運動過程中,試探究下列兩個式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請直接寫出這個定值;如果不是定值的,請直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2 -
3.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC.55
(1)求證:AE=CE;
(2)當點P在線段BC上時,設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當點P在線段BC的延長線上時,若△PEC是直角三角形,請直接寫出BP的長.發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1
相關(guān)試卷