試卷征集
加入會員
操作視頻

已知橢圓
Γ
x
2
a
2
+
y
2
b
2
=
1
a
b
0
的離心率是
1
2
,其左、右焦點分別為F1、F2,過點B(0,b)且與直線BF2垂直的直線交x軸負半軸于D.
(1)設
b
=
2
3
,求a的值;
(2)求證:
2
F
1
F
2
+
F
2
D
=
0
;
(3)設a=2.過橢圓Γ右焦點F2且不與坐標軸垂直的直線l與橢圓Γ交于P、Q兩點,點M是點P關于x軸的對稱點,在x軸上是否存在一個定點N,使得M、Q、N三點共線?若存在,求出點N的坐標;若不存在,說明理由.

【考點】橢圓與平面向量
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/24 8:0:9組卷:84引用:1難度:0.5
相似題
  • 1.在直角坐標系xOy中,已知橢圓
    C
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的右焦點為F(1,0),過點F的直線交橢圓C于A,B兩點,|AB|的最小值為
    2

    (Ⅰ)求橢圓C的標準方程;
    (Ⅱ)若與A,B不共線的點P滿足
    OP
    =
    λ
    OA
    +
    2
    -
    λ
    OB
    ,求△PAB面積的取值范圍.

    發(fā)布:2024/12/29 13:30:1組卷:105引用:3難度:0.4
  • 2.橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點分別為F1,F2,過點F1的直線l交橢圓C于A,B兩點,若|F1F2|=|AF2|,
    A
    F
    1
    =2
    F
    1
    B
    ,則橢圓C的離心率為(  )

    發(fā)布:2024/12/6 18:30:2組卷:753引用:6難度:0.6
  • 3.已知橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點分別為F1、F2,經過F1的直線交橢圓于A,B,△ABF2的內切圓的圓心為I,若3
    IB
    +4
    IA
    +5
    I
    F
    2
    =
    0
    ,則該橢圓的離心率是( ?。?/h2>

    發(fā)布:2024/11/28 2:30:1組卷:1191引用:12難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正