已知A(x1,y1),B(x2,y2)是拋物線y2=4x上相異兩點,且滿足x1+x2=2.
(Ⅰ)AB的中垂線經過點P(0,2),求直線AB的方程;
(Ⅱ)AB的中垂線交x軸于點M,△AMB的面積的最大值及此時直線AB的方程.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:790難度:0.1
相似題
-
1.已知0<k<4直線L:kx-2y-2k+8=0和直線M:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則這個四邊形面積最小值時k值為( ?。?/h2>
發(fā)布:2024/12/29 2:0:1組卷:324難度:0.7 -
2.數學家歐拉于1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的外心(三邊中垂線的交點)、重心(三邊中線的交點)、垂心(三邊高的交點)依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( )
發(fā)布:2024/11/12 21:0:2組卷:731難度:0.5 -
3.數學家歐拉于1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的外心(三邊中垂線的交點)、重心(三邊中線的交點)、垂心(三邊高的交點)依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( ?。?br />注:重心坐標公式為橫坐標:
;縱坐標:x1+x2+x33y1+y2+y33發(fā)布:2024/10/25 1:0:1組卷:69引用:1難度:0.6