當(dāng)前位置:
知識點(diǎn)挑題
請展開查看知識點(diǎn)列表
>
<
更多>>
![]() |
熱點(diǎn)預(yù)測
高考復(fù)習(xí)
難題搶練
瀏覽次數(shù):71
更新:2025年02月08日
|
![]() |
熱點(diǎn)預(yù)測
高考復(fù)習(xí)
熱搜題專練
瀏覽次數(shù):33
更新:2025年02月08日
|
171.如圖,在幾何體ANB1BCC1中,四邊形ABB1N為梯形,四邊形BCC1B1為矩形,平面BCC1B1⊥平面ABB1N,AN∥BB1,AB⊥AN,BB1=2AB=2AN=8.
(1)求證:平面BNC⊥平面B1NC1;
(2)求三棱錐A-BCN與四棱錐N-BCC1B1的體積的比值.發(fā)布:2025/1/2 8:0:1組卷:36引用:3難度:0.5172.如圖,空間幾何體ADE-BCF中,四邊形ABCD是梯形,四邊形CDEF
是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是線段AE上的動點(diǎn).
(1)求證:AE⊥CD;
(2)試確定點(diǎn)M的位置,使AC∥平面MDF,并說明理由;
(3)在(2)的條件下,求空間幾何體ADM-BCF的體積.發(fā)布:2025/1/2 8:0:1組卷:298引用:5難度:0.3173.過正三棱柱底面一邊所作的正三棱柱的截面是( ?。?/h2>
發(fā)布:2025/1/2 8:0:1組卷:136引用:2難度:0.9174.過正三棱柱底面一邊的截面是( ?。?/h2>
發(fā)布:2025/1/2 8:0:1組卷:14引用:1難度:0.8175.在如圖所示的多面體中,平面ABB1A1⊥平面ABCD,四邊形ABB1A1是邊長為2的菱形,四邊形ABCD為直角梯形,四邊形BCC1B1為平行四邊形,且AB∥CD,AB⊥BC,CD=1
(1)若E,F(xiàn)分別為A1C,BC1的中點(diǎn),求證:EF⊥平面AB1C1;
(2)若∠A1AB=60°,AC1與平面ABCD所成角的正弦值,求二面角A1-AC1-D的余弦值.55發(fā)布:2025/1/2 8:0:1組卷:143引用:2難度:0.4176.在棱長為1的正方體ABCD-A1B1C1D1中,過對角線BD1的一個(gè)平面交AA1于E,交CC1于F,得四邊形BFD1E,給出下列結(jié)論:
①四邊形BFD1E有可能為梯形
②四邊形BFD1E有可能為菱形
③四邊形BFD1E在底面ABCD內(nèi)的投影一定是正方形
④四邊形BFD1E有可能垂直于平面BB1D1D
⑤四邊形BFD1E面積的最小值為62
其中正確的是(請寫出所有正確結(jié)論的序號)發(fā)布:2025/1/2 8:0:1組卷:408引用:8難度:0.7177.如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
CD,M是線段AE上的動點(diǎn).12
(Ⅰ)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.發(fā)布:2025/1/2 8:0:1組卷:49引用:4難度:0.1178.如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是線段AE上的動點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求點(diǎn)A到平面DMF的距離.發(fā)布:2025/1/2 8:0:1組卷:11引用:1難度:0.5179.(文)如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=12CD.M是線段AE上的動點(diǎn).
(Ⅰ)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求三棱錐F-DEM與幾何體ADE-BCF的體積之比.發(fā)布:2025/1/2 8:0:1組卷:12引用:1難度:0.5180.如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形,∠BAD=∠CDA=90°,AB=AD=DE=
CD,M是線段DE上的動點(diǎn).12
(1)試確定點(diǎn)M的位置,使BE∥平面MAC,并說明理由;
(2)在(1)的條件下,四面體E-MAC的體積為3,求線段AB的長.發(fā)布:2025/1/2 8:0:1組卷:111引用:2難度:0.5
![login](http://img.jyeoo.net/images/root/visitor-fixed.png)