(1)在△ABC中,AB=nAC,∠BAC=α,∠DAE=12α,且點D,E為邊BC上的點(分
別不與點B,C重合,且點D在點E左側(cè)).
①初步探究
如圖1,若n=1,α=120°,BD=CE,試探究BD,DE,CE之間的數(shù)量關(guān)系.
下面是小東的探究過程(不完整),請補充完整.
1
2
解:∵n=1,α=120°, ∴AB=AC,∠BAC=120°,∠DAE=60°. ∴∠ABD=∠ACE=30°. 如圖4,將△ABD繞點A逆時針旋轉(zhuǎn)120°,得到△ACG,連接GE. 由旋轉(zhuǎn)的性質(zhì),可知△AGC≌△ADB, ∴BD=CG,AD=AG,∠ACG=∠ABD=30°. ∴CE=CG,∠GCE=60°. ∴△CGE為等邊三角形.(依據(jù): 有一個角為60°的等腰三角形 有一個角為60°的等腰三角形 )∴CG= CE CE =GE GE .∵∠DAG=120°,∠DAE=60°, ∴∠DAE=∠EAG=60°, 又∵AE=AE, ∴△ADE≌△AGE. ∴DE=GE. ∴BD=CE=DE. |
如圖2,若n=1,α=90°,BD≠CE,請寫出BD,DE,CE之間的數(shù)量關(guān)系,并就圖2的情形說明理由.
(2)問題解決
如圖3,在△ABC中,∠BAC=45°,AM⊥BC于點M,BM=3,CM=2,點N為線段BC上一動點,當(dāng)點N為BC的三等分點時,直接寫出AN的長.
【考點】幾何變換綜合題.
【答案】有一個角為60°的等腰三角形;CE;GE
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:244引用:1難度:0.4
相似題
-
1.如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,且DE=DA.
(1)求證:∠BAD=∠EDC;
(2)點E關(guān)于直線BC的對稱點為M,聯(lián)結(jié)DM,AM.
①根據(jù)題意將圖補全;
②在點D運動的過程中,DA和AM有什么數(shù)量關(guān)系并證明.發(fā)布:2024/12/23 14:0:1組卷:257引用:2難度:0.2 -
2.如圖,點M為矩形ABCD的邊BC上一點,將矩形ABCD沿AM折疊,使點B落在邊CD上的點E處,EB交AM于點F,在EA上取點G,使EG=EC.若GF=6,sin∠GFE=
,則AB=.45發(fā)布:2024/12/23 8:0:23組卷:411引用:2難度:0.1 -
3.閱讀下列材料,完成相應(yīng)任務(wù).
【探究三角形中邊與角之間的不等關(guān)系】
學(xué)習(xí)了等腰三角形,我們知道在一個三角形中,等邊所對的角相等;反過來,等角所對的邊也相等,那么,不相等的邊所對的角之間的大小關(guān)系怎樣呢?大邊所對的角也大嗎?下面是奮進(jìn)小組的證明過程.
如圖1,在△ABC中,已知AB>AC.求證∠C>∠B.
證明:如圖2,將△ABC折疊,使邊AC落在AB上,點C落在AB上的點C'處,折痕AD交BC于點D.則∠AC'D=∠C.
∵∠AC'D=+∠BDC'(三角形外角的性質(zhì))
∴∠AC'D>∠B
∴∠C>∠B(等量代換)
類似地,應(yīng)用這種方法可以證明“在一個三角形中,大角對大邊,小角對小邊”的問題.
任務(wù)一:將上述證明空白部分補充完整;
任務(wù)二:上述材料中不論是由邊的不等關(guān)系,推出角的不等關(guān)系,還是由角的不等關(guān)系推出邊的不等關(guān)系,都是轉(zhuǎn)化為較大量的一部分與較小量相等的問題,再用三角形外角的性質(zhì)或三邊關(guān)系進(jìn)而解決,這里主要體現(xiàn)的數(shù)學(xué)思想是 ;(填正確選項的代碼:單選)
A.轉(zhuǎn)化思想
B.方程思想
C.?dāng)?shù)形結(jié)合思想
任務(wù)三:根據(jù)上述材料得出的結(jié)論,判斷下列說法,正確的有 (將正確的代碼填在橫線處:多選).
①在△ABC中,AB>BC,則∠A>∠B;
②在△ABC中,AB>BC>AC,∠C=89°,則△ABC是銳角三角形;
③Rt△ABC中,∠B=90°,則最長邊是AC;
④在△ABC中,∠A=55°,∠B=70°,則AB=BC.發(fā)布:2024/11/22 8:0:1組卷:187引用:2難度:0.4
把好題分享給你的好友吧~~