我們知道,多項(xiàng)式的因式分解就是將一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式.通過因式分解,我們常常將一個(gè)次數(shù)比較高的多項(xiàng)式轉(zhuǎn)化成幾個(gè)次數(shù)較低的整式的積,來達(dá)到降次化簡的目的.這個(gè)思想可以引領(lǐng)我們解決很多相對(duì)復(fù)雜的代數(shù)問題.
例如:方程2x2+3x=0就可以這樣來解:
解:原方程可化為:x(2x+3)=0
所以x=0或者2x+3=0
解方程2x+3=0得:x=-32
所以原方程的解:x1=0,x2=-32
根據(jù)你的理解,結(jié)合所學(xué)知識(shí),解決以下問題:
(1)解方程:(x+3)2-4x2=0
(2)已知:△ABC的三邊為4、x、y,請(qǐng)你判斷代數(shù)式16y+2x2-32-2y2的值的符號(hào).
3
2
3
2
【考點(diǎn)】因式分解的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/17 15:0:1組卷:270引用:2難度:0.3
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2494引用:25難度:0.6 -
2.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個(gè)棱長為a的大正方體進(jìn)行以下探索:
(1)在大正方體一角截去一個(gè)棱長為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為 .
(2)將圖1中的幾何體分割成三個(gè)長方體①、②、③,如圖2所示,因?yàn)锽C=a,AB=a-b,CF=b,所以長方體①的體積為ab(a-b),類似地,長方體②的體積為 ,長方體③的體積為 ;(結(jié)果不需要化簡)
(3)將表示長方體①、②、③的體積的式子相加,并將得到的多項(xiàng)式分解因式,結(jié)果為 .
(4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為 .
(5)已知a-b=4,ab=2,求a3-b3的值.發(fā)布:2024/12/23 14:0:1組卷:279引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( )
發(fā)布:2024/12/24 6:30:3組卷:383引用:7難度:0.6
把好題分享給你的好友吧~~