試卷征集
加入會(huì)員
操作視頻

若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除(  )

【考點(diǎn)】因式分解的應(yīng)用
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6
相似題
  • 1.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個(gè)棱長(zhǎng)為a的大正方體進(jìn)行以下探索:

    (1)在大正方體一角截去一個(gè)棱長(zhǎng)為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為

    (2)將圖1中的幾何體分割成三個(gè)長(zhǎng)方體①、②、③,如圖2所示,因?yàn)锽C=a,AB=a-b,CF=b,所以長(zhǎng)方體①的體積為ab(a-b),類似地,長(zhǎng)方體②的體積為
    ,長(zhǎng)方體③的體積為
    ;(結(jié)果不需要化簡(jiǎn))
    (3)將表示長(zhǎng)方體①、②、③的體積的式子相加,并將得到的多項(xiàng)式分解因式,結(jié)果為

    (4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為

    (5)已知a-b=4,ab=2,求a3-b3的值.

    發(fā)布:2024/12/23 14:0:1組卷:285引用:5難度:0.4
  • 2.閱讀下列題目的解題過(guò)程:
    已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):
    ;
    (2)錯(cuò)誤的原因?yàn)椋?!--BA-->
    ;
    (3)本題正確的結(jié)論為:

    發(fā)布:2024/12/23 18:0:1組卷:2511引用:25難度:0.6
  • 3.閱讀理解:
    能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
    如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
    (1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過(guò)程);
    (2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.

    發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正