【問題情境】
將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關系,并說明理由.
【探究展示】
小宇同學展示出如下正確的解法
解:OM=ON,
證明如下:
連接CO,則CO是AB邊上的中線
∵CA=CB,
∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,
∴OM=ON(依據(jù)2)
【反思交流】
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指
依據(jù)1:等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合)等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合)
依據(jù)2:角平分線上的點到角的兩邊距離相等角平分線上的點到角的兩邊距離相等
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
【拓展延伸】
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM,ON,試判斷線段OM,ON的數(shù)量關系與位置關系,并寫出證明過程.
【考點】幾何變換綜合題.
【答案】等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合);角平分線上的點到角的兩邊距離相等
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:175引用:2難度:0.3
相似題
-
1.如圖(1),在矩形ABCD中,AB=6,BC=2
,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達A點后,立即以原速度沿AO返回;另一動點F從P點出發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當兩點相遇時停止運動,在點E、F的運動過程中,如圖(2)以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側.設運動的時間為t秒(t>0).3
(1)如圖(3),當?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)如圖(4),當?shù)冗叀鱁FG的頂點G恰好落在CD邊上時,求運動時間t的值;
(3)在整個運動過程中,設等邊△EFG和矩形ABCD重疊部分的面積為S,請求出S與t之間的函數(shù)關系式,并寫出相應的自變量,的取值范圍.發(fā)布:2025/1/13 8:0:2組卷:357引用:2難度:0.5 -
2.如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,且DE=DA.
(1)求證:∠BAD=∠EDC;
(2)點E關于直線BC的對稱點為M,聯(lián)結DM,AM.
①根據(jù)題意將圖補全;
②在點D運動的過程中,DA和AM有什么數(shù)量關系并證明.發(fā)布:2024/12/23 14:0:1組卷:259引用:2難度:0.2 -
3.如圖,點M為矩形ABCD的邊BC上一點,將矩形ABCD沿AM折疊,使點B落在邊CD上的點E處,EB交AM于點F,在EA上取點G,使EG=EC.若GF=6,sin∠GFE=
,則AB=.45發(fā)布:2024/12/23 8:0:23組卷:414引用:2難度:0.1